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PREFACE.

rriHIS pamphlet is intended to be read as a supplement to the

-*- accounts of ' Indefinite Integration ' given in text-books on the

Integral Calculus. The student who is only familiar with the latter is

apt to be under the impression that the process of integration is essen-

tially ' tentative ' in character, and that its performance depends on a

large number of disconnected though ingenious devices. My object

has been to do what I can to show that this impression is mistaken, by

showing that the solution of any elementary problem of integration

may be sought in a perfectly definite and systematic way.

The reader who is familiar with the theory of algebraical functions

and algebraical plane curves will no doubt find the treatment in

Section V. of the integrals of algebraical functions sketchy and

inadequate. I hope, however, that he will bear in mind the great

difficulty of presenting even an outline of the elements of so vast

a subject in a short space and without presupposing a wider range

of mathematical knowledge than I am at liberty to assume.

I have naturally not said much about particular devices which are

only useful in special cases, but I have tried to show, where it is

possible, how such devices find their place in the general theory. And

I would strongly recommend any reader who is not already familiar

with the general processes here explained to work through a number

of examples (those for instance which have been set in the Mathe-

matical Tripos in recent years) using in each case both the general

method and any special method which he may find better adapted to

the particular case.

1B9974



VI PREFACE

1 have bon-owed largely from the Cours d'Analyse of Hermite and

Goursat, but my greatest debt is to Liouville, who published in the

years 1830-40 a series of remarkable memoirs on the general problem

of integration which appear to have fallen into an oblivion which they

certainly do not deserve. It Avas Liouville who first gave rigid proofs

of wliole series of theorems of the most fundamental importance in

analysis—that the exponential function is not algebraical, that the

logarithmic function cannot be expressed by means of algebraical and

exponential functions, and that the standard elliptic integrals cannot

be expressed by algebraical, exponential and logaritlmaic functions.

That such theorems require proof is too often altogether forgotten.

I have added a list of references for the benefit of more advanced

readers.

G. H. H.

November, 1905.
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THE INTEGRATION OF FUNCTIONS OF
A SINGLE VARIABLE.

I. Introduction.

The subject of the following pages is what may fairly be described

as the fundamental problem of the Integral Calculus properly so called

:

'' to find a function whose difftrential coefficient is a given function,' or

to solve the differential equation

l=-^(-) w-

It may seem at first sight that the Integral Calculus thus defined

is merely a very small department of the theory of Differential

Equations. Indeed Euler, the first systematic writer on the Calculus,

defines the Integral Calculus in a way which includes tlie whole of that

theory in its scope :
' calculus integralis est methodus, ex data differen-

tialium relatione inveniendi relationem ipsarum quantitatum*.' Or

again it may seem as if, according to our definition, the Integral

Calculus is only a small part of the Theory of Definite Integrals. The

latter theory, starting from the -definition of the definite integral

\'^J\t)dt,
J to

as the limit of a certain sum, shows us that, under certain conditions

on which we need not insist, the solution of the equation (1) is given by

2/
jy(t)dt.

Every problem of what is usually (though not very happily) called

' indefinite integration ' may therefore be regarded as a problem in the

* Institutiones Calculi Interjralis, p. 1.

H.



2 INTRODUCTION [l

theory of definite integrals, wliile tlie latter theory obviously includes

many prol)leuis which fall outside the former.

In spite of this ' indefinite integration ' in reality forms an inde-

pendent theory, proceeding by its own methods and meeting with

difficulties peculiar to itself When we say that we have solved

a dilferential equation,

for exami>le, we mean that we have succeeded either in expressing

y oxjilicitly in terms of x by functional signs, one of which may be

the sign of indefinite integration, or implicitly by means of some

relation such as an algebraical ecpiation. We have in other words

removed the difficulties of the problem from the field proper to the

theory of differential equations to that of some other theory whose

results are taken for granted. If our result involves the sign of

indefinite integration the further question arises as to whether the

process indicated can actually be carried out, and this is a question

not in differential equations but in integral calculus.

Much the same may be said of the relations of the theory of

' indefinite integration ' to the theory of definite integrals, or rather to

the part of the latter theory which is concerned with the evaluation of

particular integrals. To evaluate
«

Jo

for instance, is to express it explicitly as a function of ?/, and in this

expression the sign of indefinite integration may perfectly well occur.

With the other side of the theory of definite integrals, the side

which is really part of what is called the ' Theory of Functions of Real

Variables,' and deals with questions concerning limits, continuity, and

convergence, our present subject has really very little connection. We
may indeed draw from it the one result, to which allusion has already

been made, as to the existence of a theoretical solution of the equa-

tion (1). But from our present point of view this result is entirely

uninteresting and unimportant. What we are concerned with is the

form of the solution, and the only proof of its existence which is of any

value to us is that which consists in actually expressing it in terms of x.

And we shall not be troubled in the least by any difficulties concerning

continuity. The functions with which we shall be dealing will be always

such that they and their differential coefficients are continuous except

for certain special values of .r, and these values of ,r we shall simply
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omit from coiisideratiou. It no way affects the meaning of the

equations

dhgw _ 1 [dx

QjOC 00
log X

that log A' and \\x become infinite for x = 0.

After these preliminary remarks we may proceed to define our

subject more precisely.

II. Elementary functions and their classification.

An elementaryfunction is a member of the class of functions which

comprises

(i) rational functions,

(ii) algebraical functions, explicit or implicit,

(iii) the exponential function e^,

(iv) the logarithmic function log x^

(v) all functions which can be defined by means of any finite

combination of the symbols proper to the preceding four classes of

functions.

A few remarks and examples may help to elucidate this definition.

1. A rationalfunction is a function defined by means of any finite

combination of the elementary operations of addition, multiplication,

and division, operating on the variable x.

It is shown in elementary algebra that any rational function of

X may be expressed in the form

box"" + b^x''-' + ... +b„\

where m and u are positive integers and the «'s and ^'s constants. It

is hardly necessary to remark that it is in no way involved in the

definition of a rational function that these constants should be rational

or algebraical* or real numbers. Thus

x^ + X + i J2
X sj2 -e

is a rational function.

* An algebraical number is a number which is the root of an algebraical

equation whose coefficients are integral. It is linown that many numbers (such

as e and w) are not roots of any such equation,

1—2



4 ELEMENTARY FUNCTIONS AND THEIR CLASSIFICATION [ll

2. All e.rpUitt ((Igehm'icdl function is a function defined by means

of any finite combination of the four elementary operations and any

finite number of operations of root extraction. Thus

m I

are explicit algebraical functions. And so is .r» {i.e. ^.r"") for any in-

tegral values of m and n. But

x'^\ x'+'

are not algebraical functions at all, but transcendental functions, as

irrational or complex powers can only be defined by the aid of

exponentials and logarithms.

If y is an explicit algebraical function of x we can always find

an equation

whose coefficients are rational functions of x. Thus, for example,

the function

y= Jx+ J{x + Jx)

satisfies the eiiuatinn

y-(4/ + 47/+l).r = 0.

The converse is not true, since it has been proved that in general

equations of degree higher than the fourth have no roots which are

explicit algebraical functions of their coeflScients. A simple example

is given by the equation

7/ - ?/ — ,r = 0.

We are thus led to consider a more general class of functions, implicit

algebraical functions, wliicli includes the class of explicit algebraical

functions.

3. An algebraical function of .r is a function wliich satisfies an

equation

whose coefficients are rational functions of x.

We shall always suppose this equation to be irreducible, i.e.

incapable of resolution into factors whose coefficients are also rational

functions of .r. If it could be so resolved we could regard y as the root

of an equation of lower degree than ni. Thus if y* — af = we must

have either i/- + x = ox if-x-0. Each of these latter equations is

irreducible.
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The equation which y satisfies will have m - 1 roots other than y.

No two roots can be equal, for if two roots were equal the equation

would have a factor in common with the derived equation

imf'-^ + {ni - 1) i?iy"-- + . . . = 0,

and this common factor could be determined by the elementary theory of

the greatest common measure of two polynomials, and would be rational

in X. The original equation would therefore not be irreducible.

Of the m roots of the equation we confine our attention 'to one,

namely y. The relations which hold between y and the other roots are

of the greatest importance in the theory of functions, but we are in no

Avay concerned with them at present.

4. Elementary functions which are not rational or algebraical are

called elementary transcendental functions, or elementary transcendents.

They include all the remaining functions which are of ordinary occur-

rence in elementary analysis.

The trigonometrical (or circular) and hyperbolic functions, direct

and inverse, may all be expressed in terms of exponential or logarithmic

functions b3nneans of the ordinary formulae of elementary trigonometry.

Thus, for example,

sin x= —. (/^ - e'^"^), sinh x ^-(<f — e''^),

tan- X = 1 log (j^) , tanh- ^ == | log ([±|) .

There was therefore no need to specify them particularly in our

definition.

The elementary transcendents have been further classified in a

manner first indicated by Liouville*. According to him a function is

a transcendent of the first order if the signs of the operations of expo-

nentiation or of the taking of logarithms wdiich are present in the

formula which defines it apply only to rational or algebraical functions.

For example
xe~^^, e*^'-^ + e^J(\ogx)

are of the first order ; and so is

tan TTz S\

)

Jii + x'Y

where y is defined by the equation

y^-y-x = 0;

* Journal de Matliematiques, t. ii. (1837), p. 56.
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and so is the function y defined by the equation

An elementary transcendent of the second order is one defined by

a formula in which the exponentiations and takings of logarithms are

applied to rational or algebraical functions or to transcendents of the

first order. This class of functions includes many of great interest and

importance, of which the simplest are

e^, log log a?.

It also includes the irrational or complex power of x, since e.g.

^V2 — gV2- logo; ^^i+i — g(H-i)loga; .

the function af = ^'"^^

and the logarithms of the circular functions.

It is of course presupposed that a transcendent of the second kind

is incapable of expression as one of the first kind or as a rational or

algebraical function. Any rational function B (.r) can of course be

expressed in the fum

It is obvious that we can in this way proceed to define transcendents

of the wth order for all values of n. Thus

log log log ^, log log log log iT,

are of the third, fourth, orders.

Of course a similar classification of algebraical functions can be and

has been made. Tims we may say that

J.r, J{.r + V.r), 7{.r + V(.r + ^.r)},

are algebraical functions of the first, second, third, orders. But

the fact that there is a general theory of algebraical equations and

therefore of implicit algebraical functions has deprived this classifica-

tion of most of its importance. There is no such general theory

of transcendental equations, and therefore we shall not rank as

'elementary' functions defined by transcendental equations such as

but incapable (as Liouville* has shown that in this case y is incapable)

of finite explicit expression in terms of .r.

* Juunidl (If Miitlu'inatiqut's, t. iii. p. 523.
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5. The preceding analysis of elementary transcendental functions

rests on the following theorems :

(rt) e^ is not an algebraical function of x

;

(b) log x is not an algebraical function of x

;

(c) log.r is not expressible in finite terms by means of signs of

exponentiation and of algebraical operations, explicit or implicit {e.g.

it is not equal to e", where i/ is any algebraical function of .r);

(d) transcendental functions of the first, second, third, orders

actually exist.

These theorems are quite fundamental in analysis, and are of the

utmost importance for our present purpose. A proof of (a) and (b) will

be given later (v. 9), but limitations of space will prevent us from

giving detailed proofs of the remaining two. Liouville has given

interesting extensions of some of these theorems : he has, for example,

proved the impossibility of the exponential function satisfying any

equation of the form
Ae'^P + Be^i' + ... + RePt> = S,

where p, A, B, ..., JR, S are any algebraical functions of a; and

a, (S, ..., p any constants. It is not a little surprising that the necessity

of giving some proof of the theorems (a)—(c?) should be so generally

overlooked by writers on elementary analysis.

III. The integration of elementary functions.

Summary of results.

In the following pages we shall be exclusively concerned with the

question of the integration of elementary functions. We shall endeavour

to give as complete an account as the space at our disposal permits of

the progress which has been made by mathematicians towards the

solution of the following two problems :

—

(i) (/" /(•?') is ^'^ elementary function, how can we determine

whether its integral is also an elementary function ?

(ii) ifths integral is an elementary function, how can ice find it ?

Complete answers to these questions have not and probably never

will be given. But sufficient has been done to give us a tolerably

complete insight into the nature of the answers, and to ensure that it

shall not be difficult to find the complete answers in any particular

case which is at all likely to occur in elementary analysis or in its

applications.
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It will probably be well for us at this point to summarise the

principal results which have been obtained.

1. The integral of a rational function (rv.) is always an elementary

function. It is either itself rational or is the sum of a rational function

and of a finite number of constant multiples of logarithms of rational

functions (iv. 1).

If certain constants which are the roots of an algebraical ec^uation

are treated as known quantities the form of the integral can always be

completely determined. But as the roots of such equations are not in

general capable of explicit expression in finite terms, it is not in general

possil)le to express the integral in an absolntel}^ explicit form, although

our knowledge o't ii^finictvmal form is complete (iv. 2).

We can always determine, by means of a finite number of

elementary operations which can actually be performed, whether the

integral is rational or not. If it is rational, we can determine it

completely by means of such operations ; if not, Ave can determine

its rational part (iv. 3. 4).

The solution of the problem in the case of rational functions may
therefore be said to be complete ; for the difficulty with regard to the

explicit solution of algebraical equations is one not of inadequate

kn(»wio<lge l)ut of ])roved impossibility (iv. 5).

2. The integral of an algebraical function (v.), explicit or implicit,

may or may not be elementary.

If _// is an algebraical function of x the integral jyd.v (or, more

generally

Ji? {x, y) dx

where li denotes a rational function) is, if an elementar}^ function,

either itself algebraical, or is the sum of an algebraical function and

of a finite number of constant multiples of logarithms of algebraical

functions.

All algebraical functions wliich occur in the integral are rational

functions of x and y (v. 8. 11).

'J'hese theorems give a precise statement of a general principle

indicated by Laplace*, ' Pintegrale d'line fonction differentielle ne pent

contenir d'autres quantites radicaux que cdles qui entrent dans cette

fonction,' and, we may add, cannot contain exponentials at all. Thus
it is impossible that

/
• dx

.'V(i + ^')

* TIn'uric Analytique des Probabilites, p. 7.
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should contain e^ or ^^(1 - x) : if they occurred in a function wliose

differential coefficient is 1/^(1 +.r") it could only be (qyparenthj, and

they could be eliminated before differentiation. Laplace's principle

really rests on the fact, of which it is easy enough to convince oneself

by a little reflection and the consideration of a few particular cases

(though to give a rigorous proof is of course quite another matter),

that differentiation will not eliminate exponentials or algebraical

irrationalities. Nor, we may add, will it eliminate logarithms except

when they occur in the simple form

A log cj> (x),

where A is a constant, and this is why logarithms can only occur

in this form in the integrals of rational or algebraical functions.

We have thus a general knowledge of the form of the integral

of an algebraical function, ji/dx, when it is itself an elementary

function. Whether this is so or not of course depends on the nature

of the equation /(x, y) = which defines ?/. If this equation, when

interpreted as that of a curve in the plane (x, y), represents a unicursal

curve, i.e. a curve which has the maximum number of double points

possible for a curve of its degree, or whose deficiency is zero, x and y
can be expressed simultaneously as rational functions of a third

variable t, and the integral can be reduced by a substitution to that

of a rational function (v. 2—5). In this case, therefore, the integral

is always an elementary function. But this condition, though sufficient,

is not necessary. It is in general true that if f{x, y) = is not

unicursal the integral is not an elementary function but a new

transcendent, and we are able to classify these transcendents according

to the deficiency of the curve. If, for example, the deficiency is unity,

the integral is in general a new transcendent of the kind known as

elliptic integrals, whose characteristic is that they can be transformed

into integrals containing no other irrationality than the S(-[uare root of a

polynomial of the third or fourth degree (v. 13— 15). But there are in-

finitely many cases in which the integral can be expressed by algebraical

functions and logarithms. Similarly there are infinitely many cases

in which integrals associated with curves whose deficiency is greater

than unity are in reality reducible to elliptic integrals. Such

abnormal cases have formed the subject of many exceedingly interesting

researches, but no general method has been devised by which we can

always tell, after a finite series of operations, whether any given

integral is really elementary, or elliptic, or belongs to a higher order

of transcendents (v. 12).
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When /(.r, ?/) = is iinicursal we can carry out the integration

coihph'tehi in exactly tlie same sense as in the case of rational functions.

In {(articular, if the integral is algebraical it can be found by means

only of elementary operations which are always practicable. And
it has been shown, nujre generally, that we can always determine by

means of sucii operations whether the integral of any given algebraical

function is algebraical or not, and evaluate the integral when it is

algebraical. And although the general problem of determining whether

any given integral is an elementary function, and calculating it if it

is one, has not been solved, the solution in the particular case in which

the deficiency of the curve / {x, ?/) = is unity is as complete as there

is reaiion to suppose that any possible solution can be (v. 12).

3. The theory of the integration of transcendental functions

(vi.) is naturally much less complete, and the number of classes

of such functions for which general methods of integration exist is

very small. These few classes are, however, of extreme importance

in applications (vi. 2. 3).

There is a general theorem concerning the form of an integral of

a transcendental function (when it is itself an elementary function)

which is (piite analogous to those already stated for rational and
algebraical functions. The general statement of this theorem will be

found in vi. (5) ; it shows, for instance, that the integral of a rational

function of (say) x, e" and log x is either itself a rational function

of those functions, or is the sum of such a rational function and of

a finite number of numerical multiples of logarithms of similar

functions. From this may be deduced a number of more precise

results concerning more particular forms of integrals, such as

[yt^dx, Jylogxdx,

where i/ is an algebraical function of x (vi. 4. 6).

IV. Rational functions.

1. It is proved in treatises on Algebra* that any polynomial

can be exi)re.ssed in the form

bo (X - a,)'"' {X - a^)'"^ . . . (.r - a,)"V,

where nij, ... are positive integers whose sum is n, and a,, ... are real

* See, e.g., Clirystal's Algebra, vol. i. pp. 151—162, 248—254.
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or complex quantities ; and that any rational function R {x), whose

denominator is Q{x), may be expressed in the form

A^T^ + A,x^'-'+... +A, + i jA]_ + ^^^ + ... + f^^'"'s
\ .

Hence

f x^'^^ x^
\R ix) dx = Aq + Ai— + ... + A.,x + C
J 2J+1 p

'

+ 2 ( A. 1 log (x - a^ - -fc - ...
- //-'"^ ^ -] .

From this we conclude that the integral of any rational function is an

elementary function which is rational save for the possible presence

of logarithtns of rational functions. In particular the integral will be

rational if each of the quantities ^s, i is zero: this condition is evidently

necessary and sufficient. A necessary but not sufficient condition is

that Q (.r) should contain no simple factors.

The integral of the general rational function may be expressed

in a very simple and elegant form by means of symbols of differentiation.

We may suppose for simplicity that the degree of P{x) is less than

that of Q (x) ; this can of course always be ensured by subtracting

a polynomial from R (x). Then

= {ll{m, -1)1 {m, - 1) ! ... {m, - 1) l} D„,_,, .,_,...,«,_,^^

,

where Qo (x) = b^ (x - a^) {x - a,,) . . . {x - a,.),

and Z>,„,_i,. ..,„(,._! represents the operation
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It has been assumed above that if

then --=
I
~<^^^

On J Oa

dF df c^F

da cx'da

'

df d^F
follows from the first that ;^ = .^-^^ what has reallv been assumed is that

da Oa ex

d^F ^ d^F

cad.v dx'Ca'

It is known tliat this equation is always true for .v= Xo, a = a„ if a circle

can be drawn in the plane of {x, a) whose centre is Xq, oq and within which

the differential coefficients are continuous.

2. From one point of view the preceding investigation is complete.

From otliers, and notably from that of practical applicability, it is far

from perfect, for the simple reason that the factors of the denominator

cannot be found, as the roots of Q {.r) = are not in general explicit

algebraical functions of the coefficients. The difficulty may be stated

thus: the funetio)Kt Iform of the integral is completely determined, but

it involves ro)i.'<f(())f!^ which cannot be expressed explicitly as functions

of the constants which occur in the subject of integration. Hence we

cannot determine, by the method of decomposition into partial fractions,

such an integral as

f4x^ + 21^« + 2^ - S.v' - 3 ,

P
or even determine whether the integral is rational or not, although it

is in reality a very simple function. A high degree of importance

therefore attaches to tlie further problem of determining the integral

of a given rational function so far as possible in an absolutely explicit

form and by means of o])erations which are always practicable.

It is easy to see that a c()m])lete solution of this problem cannot be

looked for.

Suppose for example that P{x) reduces to unity, and that Q{x)= is

an equation of the fifth degree whose roots oj, ao, ... og are all distinct, and
not capable of explicit algebraical expression.

Then //e(.r)rf;t- = I^S(:^--"«)
J 1 y (a»)

= logn{(x-«,)V«'(-.)},
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and it is only if at least two of the quantities <2' (««) fi'i'e commensurable that

any two or more of the factors {x - ag)^/^' ^"-"^ can be associated so as to give

a single term of the type A log<S'(^), where S (.v) is rational. In general this

will not be the case, and so it will not be possible to express the integral in

any finite form which does not explicitly involve the roots. A more precise

result in this connection will be proved later (iv. 5).

3. The first and most important part of the problem has been

solved by Hermite, who has shown that the rational part of the

integral can always be determined without a knowledge of the roots of

Q(.r), and indeed without the performance of any operations other

than those of elementaiy algebra*.

Hermite's method depends upon a fundamental theorem in

elementaiy algebra which is also of immense importance in the

ordinary theory of partial fractions!:

' If A^i and ^"^2 are two polynomials in .r which have no common

factor, and A's any third polynomial, we can determine two polynomials

Ai, A., such that

A,A\ + A,A\ = AV
Suppose that Q (^) = Q^Q^Qs'-- Q,\

Q^, ... denoting polynomials which have only simple roots and of

which no two have any common factor. We can always determine

Qi, ... by elementary methods, as is shown in the elements of the

Theory of Equations:}:.

We can determine B and Ai so that

BQ, + A,Q,'Q,\..Q/-P,
and therefore so that

^, , P ^1 B
^ C^V = n = 7T +

(^ ^1 H^H^ ••Ht

By a repetition of this process we can express R (.r) in the form

A^ A. At

and the problem of the integration of B (.r) is reduced to that of the

integration of a function

A

* The following account of Hermite's method is in substance taken from

Goursat's Cours d'Analyse 3Iathematique, t. i. pp. 238—241.

t See Chrystal's Algebra, vol. i. pp. 119 et seq.

X Burnside and Pauton, Theory of Equations, pp. 158—9.
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where V i^ ^ pol5'noraial wliose roots are all distinct. Since this is so,

Q and its derived function Q' have no common factor; we can therefore

determine C and /) so that

CQ + Z)Q' = A.
Therefore

JO" JO"
^ ' ' ^D^{~^Adx

r + /
^ d^i

(v-\)q-' JQ"-'

where E^C+—:.D'. Proceeding in this way, and reducing by unity

at each step the power of IjQ which figures under the sign of integra-

tion, we ultimately arrive at an equation

j
— da; = B,(.r)+j -^dx,

where li^ is a rational function and S a polynomial. The integral on

the right-hand side has no rational part, since all the roots of Q are

simple*. Thus the rational part of jR {x) dx is

R2 (x) + R;,{x) + ...+ Rt (x),

and it has been detennined without the need of any calculations other

than those involved in the addition, multiplication and division of

polynomials. The operation of forming the derived function of a

given polynomial can of course be effected by a combination of these

operations.

4. (i) Let us consider, for example, the integral

I
dx.

(^7-^ + 1)2

mentioned above. We require polynomials A^, A-i such that

Ai{x''-x-it-\)^A2{l3fi-\) = AxP+ 'i\afi+ '23fi-Zx^-3.

These polynomials may be found in a systematic manner by means of the

process for determining the greatest common divisor of x~ — x-\-\ and "ix^ —It;
but tlie process is laborious and inconvenient. It is therefore better to use

the method of luidetermined coefficients. In general, if Xx is of degree m^

and X-i of degree m.^., and X3 of degree less than mi + mo, we can suppose Ai

* We assume for the moment that no sum of the type S.-I^log (.r-Oj.), where

all the a's are different, can be wholly or partly rational. See v. 9 (ii).

t Chrystal's Algebra (loc. cit.).
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and A 2 to be of degrees ?;i2 — 1 a^id nii — 1 respectively, as we have then

exactly vii + m^ equations to determine mi + m.2 unknown coefficients.

These equations are independent. For if not we could find two distinct

formulae

A,l\ + A2X2= Xs, B,1\ + B.,X2= X^,

and so (^1 - B^) X\ + {A2- B.) ^2=0 ;

which is impossible, since X^ and X^ have no common factor. The coefficients

can therefore be uniquely determined. If X^ is of degree higher than

mi + ?H2-l we must first divide it by XjA'a and then express the remainder

in the required form.

In this case we may suppose Jj of degree 5 and A 2 of degree 6, and we
find that

Ai=-3x% A2=.v^+ S.

Thus the rational part of the integral is

x^ + S

and since -3x^i-(.v^ + 3)'= there is no transcendental part.

(ii) The following problem is instructive : to find the conditions that

/^
dx

(A.v^+ 2Ba; + Cf

may he rational, and to determine the integral when it is rational.

We can determine p, q and r so that

p {Ax'^+ 2Bx+ (?) + 2 {qx+ r) {Ax-\-B)^ax- + 2^x + y,

and the integral becomes

^ j Ax'+ 2Bx+ C ~
J

^^''''
"^ '"^^ \Ax'^ + 2Bx+ c)

"^"^

_ qx+ r . . f dx
^ " Ax^+ 2Bx+ C + ^^' + '^^

j Ax^+ iB^+C

'

the condition that the integral should be rational is therefore p + q =
Equating coefficients we find

A{p + 2q) = a, B(p + q)+Ar= l3, Cp + 2Br= y.

Hence we deduce
a a B

P=-A^ ^= 1' '= J'

and Ay+ Ca=^ 2B^. The condition required is therefore that the two quadratics

(a, /3, y), (A, B, C) should be harmonically related, and in this case

/
ax^+ 2^x+ y , ax+^

{Ax^ + 2Bx+Cy A{Ax'+ 2Bx + C)
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If we replace B Vjy (^•ly+ C'a)/2/3, and operate on both sides of the last

equation with the operator

1/ , 3 . , 8\

where a' and y are arbitnirj, we deduce that

j {Ax'^+^Bx^Cf

is rational if a, = a'/3, 2/3i = a'y + -y'a, 71 = y'^, or (what is the same thing) if

a.r^ + 2,3.>; 4- 7 and aiX' + ifiiX+ yi are harmonically related. By a repetition

of this argument we can prove that

is rational if all the quadratics are harmonically related to any one of those

in the numerator.

5. It appears from the preceding paragraphs that we can always

find the rational part of the integral, and can find the complete integral if

the roots of Q {x) = can be found. The question is naturally suggested

as to the maximum of information which can be obtained about the

logarithmic part of the integral in the general case in which the factors

of the denominator cannot be determined explicitly. For there are

polynomials which, although they cannot be completely resolved into

such factors, can nevertheless be partially resolved. For example

^14 _ 2a^ - 2.r^ - X* - 2af + 2x+l^{x' + a^-l) {x' - x- - 2x - 1),

x"^ - 2x^ - 2x' - 2x^ - Ax" - x^ + 2x + 1

= {x' + x" J2 + A-
(
V2 - 1) - 1 }

{.r - x" J2 -x{j2 + \)-l}.

The factors of the first polynomial h.ave rational coefficients : in the

language of the theory of equations, the polynomial is reducible in

the rational domain. The second polynomial is reducible in the

domain formed by the adjunction of the single irrational ^/2 to the

rational domain*.

We may suppose that every possible decomposition of Q (.r) of this

nature has been made, so that

Then we can resolve R (x) into a sum of partial fractions of the type

* See Cajori, An introduction to the Modern Theory of Equations (Macmillan,

1904).
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aud so we need only consider integrals of the type

/Q
^^'

,vhere no further resolution of Q is possible (in technical language Q is

irreducible by the adjunction of any algebr-aical irrationality).

Suppose that this integral can be evaluated in a form involving

only constants which can be explicitly expressed in terms of the

constants which occur in PjQ. It must be of the form

^ilogXi + ... +.ltJogXi.,

where the ^'s are constants and the A^'s polynomials. We can suppose

that no X has a multiple root : if e.g. X^ had one we could determine

it rationally in terms of the coefficients of Xi and the corresponding

factor (x — a)'" could be removed from Xi by inserting a new term

mAi\og{.v - a)

in the expression of the integral*. For a similar reason we can

suppose that no two A^'s have any common factor.

Now
— J

Ali . X2 A -^k

or px,x, ...Xu = Q %A ,x^ . . . x_iX;a;+, . . . X,

.

All the terms under the sign of summation are divisible by Xi save

the first, which is prime to A"]. Hence Q must be divisible by A'l

:

and similarly, of course, by Xo, X3, ..., X^. Since F is prime to Q,

X1X2 .

.

. Xk is divisible by Q : hence

I
Q = Jl 1X2 •• A fc

save for a constant factor. But e,r hypothesi Q is not resoluble into

factors which contain only explicit algebraical irrationalities. Hence

all the A"'s save one must reduce to constants, and so P must be

a constant multiple of Q', and

jgdx=-A log Q,

where A is a constant. Unless this is the case the integral cannot be

expressed in a form involving only .constants explicitly expressed in

terms of the constants which occur in P and Q.

* If A'l had more than one multiple root of the same order we might not

be able actually to determine them rationally in terms of its coefficients (e.g.

Xi = (x-a)(.v'^-x-a)-), but we could so determine the factor corresponding to all

these roots, so that the argument would not be affected.

2
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Thus, for instance, the integral

/.

dx

x^+ ax-\-h I

cannot be expressed in a form involving only constants explicitly expressecl

in terms of a and h ; and

J x^+ ax+ h

can be so expressed if and only if c= a. We thus confirm an inference formed

before (iv. 2) in a less rigid way.

Before quitting this part of our subject we may consider one further

problem ; mider what circumstances is
j

\R{x)dx=A\ogRi{x)
'

where A is a constant and Rx rational? Since the integral has no rational

part it is clear that Q {x) must have only simple factors, and that the degree

of P {x) must be less than that of Q (x). We may therefore use the formula

/
R (x) dx= \og U {{x - a«)^('^»)/<^'("«^}.

The necessary and sufficient condition is that all the quantities P {ag)lQ' (a,)

must be commensurable. If e.g.

\x-a){x-^y

(a — y)l{a - ^) and (/3 — -y)/(/3 - a) must be commensurable, i.e. (a - y)/(/3 - y) must

be a rational number. If the denominator is given we can find all the values

of y which are admissible : for y = {aq - ^p)l{q —p) where p and q are integers.

V. Algebraical Functions.

1. We shall now consider the integrals of algebraical functions,

explicit or implicit. The theory of the integration of such functions is

far more extensive and difficult than was the case with the rational

functions, and we can only give here a brief account of the most

important results and of the most obvious of their applications.

If yi, y-i, •, yn are algebraical functions of x any algebraical function

z of x,yi, •..,yn is an algebraical function of x. This is obvious if we

confine ourselves to explicit algeliraical functions. In the general case

we have a number of equations of the ty^&

P>,o i-r) y.'"" + Pm (x) 7/,'""-^ + . . . + P., „„ (x) =

(v-l,2, ..., «), and
i

i\{^,y^, yn)z"' + ••• + Pm(.A\yx, ...,yn) = 0,

where the F's represent polynomials in their arguments. The
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elimination of ?/i, y.,, ..., i/„ between these e(iuations gives an eciuation

for ;:;, whose coefficients are polynomials in .t only.

The importance of this from our present point of view lies in the'

fact that we may consider the standard algebraical integral under any
of the forms

(a) jy dx, where/ (.r, y) = ;

{b) JE (.r, y) dx, where/ (.r, y) = and R is rational

;

{c) jE (.r, ;/i , . .
. , y„) dx, where ./; (x, y) = 0,..., f„ (x, y,,) = 0.

It is, for example, much more convenient to treat such an irrational

X- J(x+ 1)- J(x- 1)

1 + jIx+1)+ s/(x-1)

as a rational function of x, y^, y., where yi = s/{x+ 1), yo= J(x- 1),

yi^ = X + 1, y.2^ = x — 1, than as a rational function of x and

y=J(x+ 1) + J{x-l),

so that y - Axy^ + 4 = 0;

while to treat it as a simple irrational y, so that our fundamental

equation is

{x-yy~4x{x-yf{l+yf+4.{l+yy^0

is evidently still more inconvenient.

Before we proceed to consider the general form of the integral of an

algebraical function it will be convenient to consider one most important

case in which the integral can be immediately reduced to that of

a rational function, and therefore is always an elementary function

itself. It will perhaps be well at this point to emphasize two points

which we have already mentioned (ii. 3) : viz. (i) that our defining

relation /{x, y) = is always supposed to be irreducible and (ii) that

we confine our attention to one of its roots.

2. The class of integrals alluded to immediately above is that

covered by the following theorem.

1/ there is a variable t connected ivith x and y (or yi, y^, , yn) by

rational relations

x^E.it), y = E,{t)

(or y, = E4'^ (t), y. = i?./-' (t), ...) the integral

JE (.r, y) dx

(or JE (x, ?/i, ...
,
3/„)f/.r) can be evaluated in finite terms by means of

elementary functions.

2—2
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This is practically obviou s, since

all the capital letters denoting rational functions.

It is to be observed that from our present point of view it is quite

immaterial whether an integral be transformed by a real or by an imaginary

substitution. For the equation

^/{^)dj;= lf{<i>{t)}(l>'{t)dt,

dF(x) ., ,

means simply that it —-5— =/ {x),

then ^^j^=f{<^{t))<\>'{t\

and it is of no importance whether is a real function or not.

It is of the utmost importance, of course, when we are de<iling with

definite integrals.

The most important case of this tlieorem is that in which ,r and ?/

are connected by the general quadratic relation

{a, b, c, /; g, k^.r, y, l)' = 0.

The integral can be made rational in an infinite number of ways. For

suppose that (^, r?) is any point on the conic, and that

is any line tlirough the point. If we eliminate y between these

equations we obtain an equation of the second degree in x,

Tn, 7",, T-i being polynomials in t. But one root of this equation must

be c, which is independent of t ; and when we divide by x - ^ we obtain

an ecpuition of the Jimt degree for the abscissa of the variable point of

intersection, in which the coelhcients are again polynomials in t.

Hence this abscissa is a rational function of t ; the ordinate of the

variable point of intersection is also a rational function of t, and

as t varies this point coincides with every point of the conic in turn.

In fact the equation of the conic may be written in the form

aii^ + 2huv + bv- + 2 {at + h-q + g) 11 + 2 (/i$ + brj +/) v = 0,
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where u = x-i, v = y--q, and the other point of intersection of the line

v= tu and the conic is given by

2 {«g + hnq + g + t(ki + br] +/)}
i-

a + 2ht + bf

_2t{ai + hr] + g + t{h^+ b-q +/)}^~'^
a + 2ht + bf

The most important case is that in which b= - 1,/= h = 0, so that

y^ = ax^ + 2gx + c.

The integral is then made rational by the substitution

2{a^ + g-t-n) 2t{ai^g-tr])^~^ a-f '

y~^ ~a-f
where ^, •>? are any quantities such that

yf = «^- + 2g^ + c.

We may for instance suppose ^ = 0, 1^ = Jc ; or t; = 0, while ^ is a root

of the equation a^" + 2g$ + c = 0.

3. It musb not be imagined that this general method is always practically

the best for the integration of

\R (.r, Jax^+ 2gx + c) d.v.

In practice we proceed as follows. Let

y=^fX= '>Jax^+ 2^A-+ c.

Then R{x^ y) is of the form P{x\ y)jQ {x, y), where P and Q are polynomials.

By means of the equation y'^= a.v^+ 2gx+ c, R{.v,y) may be I'educed to the

form
A +B^X _ {A+BJX){C-DJX)
C+D^IX C^-D^X

where A, B, C, D are polynomials in .v ; and so to the form 3f+X,^fX, where

J/ and X are rational, or (what is the same thing) the form

where P and Q are rational. In the cases of most frequent occurrence in

practice a, g, c, .sjaa;^+ 2gx+ c and the coefl&cients which occur in P and Q are

real. The rational part may be integrated by the methods of iv., and the

integral j -pr^ dx may by the theory of partial fractions be made to depend
J V ^i

upon a number of integrals of functions of the forms

1 1

{x-p)JX' {x-pYs'X'

{aa^+ 2^x+y) JX ' (a.r2+ 2/iJ.i- + yf ^IX '
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where /?, ^, r;, n, /3, y are real constants and r a positive integer. The result

is generally required in an exi)licitly real form : and as further progress

depends on transformations involving p (or a, /3, y) it is generally not

advisable to break up a quadratic factor a^^+ 2/3.i'+y whose roots are

imaginary into its constituent linear factors.

The integrals which involve powers of x—p or ax^+ 2fix+ y higher than

the first may be deduced from those which involve only the first powers by

differentiations with respect to p or y.

The integral /, . ,„ ,

may be evaluated in a variety of manners.

(i) We may follow the general method described above, taking

^=Py Ti = J(ap^+ 2gp+ c)*.

Eliminating y from the equations

f'= ax^+ 2gx+ c, y~r} = t(x-^),

and dividing by x — ^, we obtain

f-{x-^) + 2r}t-aix+ i)-2(/= 0,

J 2dt dx dx
ana so —s = , ., — =—

.

f—a ((.r-S+, y

But {fi-a){x-^) = 2a^+ 2g-2rit;

and so

[ dx f dt 1 , , »

I (^^pT) " -
1 ^4TI^t - -, '°« <"« +* - ">

If ap'^-\-2gp-\-c<0 the transformation is imaginaryf.

Suppose, e.g.,{a)y= ^f{x+ 1), p= 0, (b) i/= J{x -l),p = 0. We find

(")
lxJ.v+l)

= ^^Sit-^\

where i-x+ 2t-l = 0,

or t= {-l + \/x+ l)/x,

* Jordan, Cours d^Aiialyse, t. ii. p. 21.

t We have supposed that p is not a root of the equation X= 0. If it is, the

integral is, as we sliall see later (v. 9(i)), algebraical, andean be determined by a

series of .elementary algebraical operations which are always practicable. Otherwise

the integral is purely transcendental. A factor of the denominator of Q which

is also a factor of A' can be found liy elementary methods, and the algebraical part

of / -j^ lie can always be determined completely by such methods. This result is

quite analogous to that already proved in the case of rational functions.
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the positive sign of the radical corresponding to the case in which

y=+^/(.^•+l):

(^) /^l)4^«S(^-^-i),

where fl.v+ 2it-l = 0.

Neither of these results is expressed in the most convenient form, the second

in particular being very inconvenient.

(ii) The most straightforward method of procedure is to use the

substitution

commonly used in text-books on the Integral Calculus. We then obtain

dz
f

dx _ f

which is a well known form reducible by a substitution of the type 2= ^+ ^- to

one of the three standard foruLS

[ dt f dt f dt

These forms may of course be rationalised, as e.g. by the respective

substitutions

_ 2mw 2)nu m(l+'W^)
^^1+^2' ^= 13^2' ^= 2^

•

but it is more convenient to use the transcendental substitutions

t= 7n sin 0, i= 7n sinh
(f),

t=m cosh 0.

And it is often convenient when dealing with more complicated algebraical

integrals, containing only one irrationality of one of the types

to reduce it to a transcendental form not involving roots by means of one of

these three substitutions. As alternative substitutions

t= VI tanh 0, t=m tan 0, t=m sec 0,

are often useful. Prof. Bromwich points out that the forms usually given in

the text-books for these three standard integrals, viz.

sin- 1 (.t^/o), sinh - * {xja), cosh ~ i {xja),

are not entirely accurate. It is obvious, for example, that the first two of

these functions are odd functions of a, while the corresponding integrals are

even functions of a. The correct formulae are sin" i
(.r/| a j),

sinh-i(.r/|a
|),

and ±cosh-i(|.r|/|a|) = log(.r+ v^A-'-^-a^),

where the ambiguous sign is the same as that of x, as the reader will easily

verify. In some ways it is more convenient to use the equivalent forms

/ X \ /
^'

\ . ^
,/\/^"''-«^\



24 ALGEBRAICAL FUNCTIONS [V

(iii) The most elegant method of integration is unquestionably that

associated with the name of Prof. Greeuhill* who uses the transformation

V=^-^ .^ x—p
It will be found that

r dx _ f dz

which is one of the three standard forms written above.

When we are dealing with the integral

h ^dx,

.(!)•

(a^2+ 2)307+ y)s/Jr

(which will naturally only be the case when the roots of ax-+ 2^x+y=0
are imaginary) by far the most convenient method of procedure is to use

Prof. Greenhill's substitution

say. I f J= (a^ - go) x^ - (ca — ay) x+gy- c/3,

1 dz _ J
z dx A'Xi

The maximum and minimum values of z are given by J=0.

Agani z^-\= - ^ i

wherein the numerator will be a perfect square if

K= (ay - /32) X2 - (ay+ ca- 2^/3) X + ac -g^= 0.

It will be found by a little calculation that the discriminant of this

quadratic and that of J=0 difl'er from one another and from

(ll-^l')(l2-^l')(^.-^2')(l2-^2'),

where ^i, ^o ^^'^ the roots of A'=0 and I/, ^-Z those of ^'1 = 0, only b}'^

a constant factor which is always negative. Since ^1' and ^o ^^^ conjugate

imaginaries this product is positive, and so .7=0 and A''=0 have real roots.

We denote tlie roots of the latter by

Xi, X2 (Xi>X2).

Then X , - 2'-= {••^V(^i«-«)+ V(^iy-g)}'' ^ {'mx+7if

A

I

Xi

,2 , _ {^x/(«-X2a)+ v/(c-X2y)l^ {m'x+ny
* '^2— y — V' {^)

say. Further, since *- - X can vanish for two equal values of x only if X is equal

to Xi or X2, i.e. when z is a maximum or a minimum, J^can only differ from

(;mx+ n) {m'x+ )i')

* A. G. Greenhill, A Chapter in the Integral Calculits (1888, Francis Hodgson),

p. 12 : Differential and Integral Calculus, p. 399.
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by a constant factor ; and by comparing coefficients and using the identity

(Xia-a)(a-X2a) = (a/3-^a)2/(ay-^2),

we find that J=^{ay— 0^){mx-\-n){m'x+n') (3).

Finally we can write ^x-\--q in the form

A {mx+ 71) +B {m'x+ n').

Using equations (1), (2), (2'), (3) we find that

j x-jx"^-'-] J ^^^^^^^

= ^ f dz B f dz
-

s/iay -0')] v/(Xi - Z^) ^ J{ay - ^^) J ^{z^ - \^)
'

and the integral is expressed in terms of real standard forms*.

4. We may now proceed to consider the general case to which the

theorem of iv. 2 appHes. It will be convenient to recall two well

known definitions in tlie theory of algebraical plane curves. A curve

of degree n can have at most h{n -1) (n — 2) double points t. If the

actual number of double points is v the number

p=hin-l)(n-2)-v

is called the deficievcyX of the curve.

If the coordinates x, yof ^"he poiiits on a curve can be expressed

rationally in terms of a parameter t by '^n nations

x = R,{tl y = B,(i),

we shall say that the curve is unicursal. In this case \\o have seen

that we can always evaluate

jR (.r, y) dx
in finite terms.

The fundamental theorem in this part of our subject is

'J curve whose deficiency is zero is unicursal, and vice versa.'

Suppose first that the curve possesses the maximum number of

double points§. Since

2 {n - 1) (« -2) + n-3=^h(n-2)(n + l)-l,

* The reader should refer to Prof. Greenhill's writings quoted above and to

Chrystal's Algebra, vol. i. pp. 464 et seq. Prof. Greenhill gives interesting

numerical examples.

t Salmon, Higher Plane Curves, p. 29.

J Salmon, ibid. p. 29. French genre, German Geschlecht.

§ We suppose in what follows that the singularities of the curve are all ordinary

double points. The necessary modifications when this is not the case are not dillficult

to make. It has been shown that an ordinary multiple point of order k may be

regarded as equivalent to hk(k-l) ordinary double points (Salmon, loc. cit. p. 28,
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and h(n-2)(n + 1) points are just sufficient to determine a curve of

degree n-2* we can, through tlie |(w - l)(n-2) double points and

w-3 other points chosen arbitrarily on the curve draw a simply infinite

set of curves of degree n - 2, which we may suppose to have the

equation

g{x,y) + th{x,y) = 0,

where /" is a variable parameter. Any one of these curves meets the

given curve in n (n-2) points of which (n - 1) (w - 2) are accounted

for by the |(w-l)(w-2) double points and w-3 by the n-S
arbitrarily chosen points. These

(w - 1) (w - 2) + n - 3 = w (w - 2) - 1

points are independent of t ; and so there is but one point of intersec-

tion which depends on t. The coordinates of this point are given by

g {a\ y) + tk (.r, y) = 0, /(.r, y) = 0.

The elimination of y gives an equation of degree n (n - 2) in a; whose

coefficients are polynomials in t, and but one root of this equation

varies with t. The elimiuant is therefore divisible by a factor of

degree n(n-2) -1 which does not contain t. There remains a simple

equation in .r whose coefficients are polyi^'^"'
"'* '" - ^^us nit;

^-coordinate of the variable point is-,
^ 7*^^'^^^ ^s a rational function

f. , ,, y .

^ -'^'liiJarly determined.
01 t, and the Tz-coorduiate^'^^

•

We may therefoi--

^ = ^Ai), y = R.{t).

•^3(0' ^~Mf) (1),

.encKU bt of degree n ; none of them can be of
Basset, Quartn-l,, Journal, xxxvi n 300^ A
ordinary multiple point of order ^-UeauhalLTT ^"^'"' " ^^^"^^ ^^' ^"
points) is therefore unicursal.

(^I^'^^^^"* to i ,« _ i) („ _ 2} ordinary double

havJt Tz:i i!:tZ'zzi::r:'' ^" '^-^'^- p-^^-^- -.« ..ie,.
and to give a satisfactor/accTunt of a

' "T "' ^"^ °'"°- conventions,
sometimes by no means easy. The LvLti T^'T '*^"^"""^^ ^'"8"'-^^^ i

as essentially occupied with\he ;;::rcaTe "
'''''''' '""^^^'^ '""^^ '^ -^-^ed

Salmon, he. cit. p. lo.
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higher degree, and one at least must be actually of that degree, since

an arbitrary straight line

A..^' + /x,?/ + V =

must cut the curve in exactly n points*.

"We shall now prove the second part of the theorem. If

x:y: 1 :: ^^{t) : <f>,{t): cl>,{f),

where ^j, ^o, 4>s are polynomials of degree n, the line

ua; + V1/ + W-0
will meet the curve in n points whose parameters are given by

u(t>,{t) + v<f>,{t) + if>,(t) = 0.

This equation will have a double root t^ if

«<^l (^o) + V<t>2 (to) + <t>i (to) = 0,

«</>/ (Q + V(t>o' (to) + i^/ (to) = 0.

Hence the equation of the tangent at the point to is

.T y 1

«^l(^o) <i>2{h) 4>z{t,) =0.

<Al' (^o) ^2 (to) ^3 (to)

If (w, y) is a fixed point this may be regarded as an equation to

determine the parameters of the points of contact of the tangents from

(x, y). Now
4>-2 (to) ^3 (to) - «/>•; (^o) ^3 (to)

is of degree 2)i-2 in t^,, the coefficient of /o""~^ obviously vanishing.

Hence in general the number of tangents which can be drawn to

a unicursal curve from a fixed point (the class of the curve) is 2n - 2.

But the class of a curve whose only singular points are 8 double points

is known f to be n {n - 1) - 28, Hence the number of double points is

l{7i(n-\)-(2n-2)] = \{n-\)(n-2).

5. The preceding argument fails if n < 3, but we have already seen

that all conies are unicursal. The case next in importance is that of

* See Niewenglowski's Geometrie Anahjtique, t. ii. p. 103. By way of illustra-

tion of the remark concerning particular cases in the footnote (§) to page 25, the

reader will do well to consider the example given by Nieweuglowski in which

t" t- +

1

equations which appear to represent the straight line 2.c=(/ + l (part of the line

only, if we consider only real values of t).

t Salmon, Higher Plane Curves, p. 54.
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a cubic with a double point. If the double point is not at infinity

we can, by a change of origin, reduce the equation of the curve to

the form
{(LT + by) {ex + dy) = pr^ + 'iqx-y + Srxy- + sy^,

and by considering the intersections of the curve with the line y = tx

we find

_ {a + bt) (c + dt) _ t{a + bt) (c + dt)
X — „ . „ ,o ) y —

p + 3qt + Srf +ps' " p + Sgt + 3rf +ps

'

If the double point is at infinity the equation of the curve is of the

form
(a.r + f3y)- (yx + 8y) + ex + ly + 6 =

(the curve having a pair of parallel asymptotes), and by considering

the intersection of the curve with the line ax + /Sy = t we find

St' + Ct + ISO yf +et + ae
^~

{I3y - aS) t" + e(S - aC ^ ~
{(Sy - a8) f + e{3 - a^'

(i) The case next in complexity is that of a quartic with three double

points.

(a) Tiie lemiii.scate {x- + y-)-= a- {x- — y-)

has three double points, the origin and the circular points at infinity. The
circle

x-+y-= t{x-y)

passes through these points and one other fixed point at the origin, as it

touches the cvn-ve there. Solving we find

(h) The curve 2ay3_ 3^22^2= ^^ _ ^a^^a

has the double points (0, 0), (o, a), ( - a, a). Using the auxiliary conic

x^--ay=tx{y-a)

we find a-= |(2-3^2), y= ^{2-2fi){2-f-).

(ii) The curve _?/»= a-" + a.r" ~ 1

has a multiple point of order n-\ at the origin, and is therefore unicursal.

In this case it is .sufiicieut to consider the intersection of the curve with the
line y= tx. This may be harmonised with the general theory by regarding
the curve

as passing through each of the \ {n- \){n- 2) double points collected at the
origin and through 7t- 3 other fixed points collected at the point

y= 0, x=-a.
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The curves
y»= A« + «.i-H-i

(1)^

y"= l+«2 (2),

are projectively eqiiivalent, as appears by rendering their equations homo-

!
geneous by the introduction of quantities z = l in (1) and .>;=1 in (2). We
conckide that (2) is unicursal, having the maximum number of double points

at infinity. In fact we may put

and \R{z, ;:,l{\ + az)]dz

is integrable in finite terms.

(f) The curve

is unicursal if and only if either (i) fior v = or (ii) ^x. + v = in. Hence

\R [x, y{x-aY{x-bY] dx,

is integrable in finite terms for all forms of R in these two cases only ; of

course it is integrable for special forms of R in other cases*.

6. There is of course a similar theory connected with unicursal

curves in space of any number of dimensions. Consider for example

the integral

jR {.V, sJia-r + h), sj{cx + d)] dx.

A linear substitution x = Ix + m reduces this to the form

lR,\y, J{y + 2),J{y-2)]dy,

and this can be rationalised by taking

The curve whose Cartesian coordinates t, Vi ^ are given by

$:r,:^:l::t' + l:t(t- + l):t{f'-l): f,

is a unicursal tw'isted quartic, the intersection of the parabolic cylinders

It is easy to deduce that

\mx + nj V Vw^.^; + nj)

can always be evaluated in finite form.

7. When the deficiency of the curve f{x, y) = is not zero the

integral

JB (x, y) dx

is in general not an elementary function ; and the consideration of

such integi-als has consequently introduced a whole series of classes of

* Ptaszycki, Bull, des Sciences Mathematiques, xii. p. 263 : Appell and Goursat,

Theorie des Fonctioiis Algebriques, p. 245.

fB{., yi
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new transcendents into analysis. The simplest case is that in which

the deficiency is unity : in this case, as we shall see later on, the

integrals are expressible in terms of elementary functions and certain

new transcendents known as elliptic integrals. When the deficiency

rises above unity the integration necessitates the introduction of new

transcendents of groAving complexity.

But there are infinitely many particular cases in which integrals,

associated with curves whose deficiency is unity or greater than unity,

can be expressed in terms of elementary functions, or are even

algebraical themselves. For instance the deficiency of

is unity. But

/

X +1 dx ^ . {l+x)--^ sjjl+x")

x-2 J{l + a^)~ ^^{\+xf + ^J{l+a^y
2-01? dx 2x

I:

l+ar'^il+a?) J{1 + a?)'

And, before we say anything concerning the new transcendents to

which integrals of this class in general give rise, we shall consider what

has been done in the way of formulating rules to enable us to identify

such cases and to assign the form of the integral when it can be

expressed in finite terms. It will be as well to say at once that this

problem has not been completely solved.

8. The first general theorem deals with the case in which the

integral is algebraical, and asserts that if

u = jydx

is an algebraicalfunctioti of x it is a rationalfunction of x and y.

If u is an algebraical function of x it satisfies an equation

^\> {X, U) = 0,

whose coefficients are polynomials in x. By means of the equation

f{x, ?/) = we can introduce y into this equation and write it in the

form

<^ ('', y, ") = 0,

Avithout altering the degree of the equation in u.

The succeeding proof depends essentially on the presence of y explicitly

iu this equation. If

/(.r, y)= Po (.»•) y"+ . . . + P„ (.r)= 0,

and A.^ is a term in P„(.r), it is obvious that

A3^ = P{x,y\
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P denoting a polynomial. If y\f (.r, u) contains a power of x as high as the

kih. we can obviously introduce y at once by means of this equation : if not

we must first multiply >// (,), u) by some power of x.

We can suppose <^ {x, y, u) irreducible, fur if not we could replace

it by some simpler equation.

By differentiating/= 0, <^ = we obtain

da: dt/ dx ' dx dy dx du dx '

and eliminating ->- we obtain an expression for -j- of the form

du _ X {x, y, ti)

dx fx (x, y, u)
'

j where A and ju, are polynomials. In order that u shall be the integral

of 3/ it is necessary and sufficient that -T-=y, i.e. that the equations

^ (.r, y, u) = 0,

k{x,y,'u)-ytx{x,y,u) = 0,

shall hold simultaneously.

Now the equation ^ = has other roots th, u.2, , ih besides u

(unless it is of the first degree, in wdiich case u is obviously a rational

function of x and y\ and these roots must all satisfy the two equations

^ = 0, X - 2//X = 0. For otherwise we could determine the greatest

common measure of ^ and X - yjx, considered as polynomials in u :

this common factor would be a polynomial in x, y, u and divide

<^ (x, y, u). But this is impossible, since ^ {x, y, u) is irreducible.

Hence a, Ui, u->, ••• ttk are all integrals of y, and therefore

-r~.(ii'+ Ui+ + ih-)

is an integral of y. But this function is a symmetric function of tiie

roots of <^ {x, y, u) = 0, and is therefore a rational function of x and y.

The theorem is therefore proved.

Thus

if the integral is algebraical, P and Q being polynomials. If ^i, v/o, ...,

y„_i are the roots of/(x, y) = 0, other than y,

[
_P{x,y)Q{x,y,) Q(x,yn-i)
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Tlie denominator is a symmetric function of y, jji, ...,i/,^-i and tliere-

fore a rational function of .v. Moreover

Q (^, ^i) Q (^. 2/2) •Q(^, yn-i)

is a symmetric function of the roots of the equation in ;:;

z-y

whose coefficients are polynomials in ,v and ;/ of which the first does

not contain y. It is therefore a rational function of a' and y integral

with respect to y, and so jydx consists of a sum of a number of terms

of the type R„{x)y''. By means of the equation /(.r, ?/) = all such

terms which involve powers of y higher than the ;^th can be eliminated.

We thus arrive at the final conclusion that if jyd.v is algebraical it

may be expressed in thefm-m

B,^R,y^...-vIt,,-,y^'-^

where Bo, Bi, are rationalfunctions of x*.

The most important case is that in which

y=^J'B{^,

where B{x) is rational. In this case

dy ^B'{x)
dx ny^~'^

'

But
n-ly^Bo +Biy+...+B'n-iy

+ {B, + 2B,y+ ... + (/.- l)i?„_,/-=}
f^

(1).

Eliminating -^ between these equations we obtain an equation

OT (x, y) =

where ro (x, y) is a polynomial. In virtue of a theorem proved and

used before this equation, and therefore the equation (1), must be

satisfied l)y all the roots oi y^ = B (x). The same therefore holds of

the equation

jydx = Bo + B,y+...+B„-^y"-\

In this eciuation we may therefore replace y by (ay, w being any

* For the preceding proof see Abel, (Euvres, t. i. p. -545 et seq., and Crelle,

b. IV. p. 264; Liouville, Journal dc VEcoU Polytechnique, t. xiv. p. 149; Bertrand,

Calcul Integral, Ch. V.
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primitive nth. root of unity. Making this substitution and multiplying

by w"-^ we obtain

Ji/do! = (o»-ii?o + B,:i/ + wILi/ + ... + w"--'R,^_,f-\

and on adding the n e(iuations of this type we obtain

ji/dw = E,i/.

Thus in this case the functions 7?o, ^2, •••, ^«-: all disappear.

It has been shown by Liouville that the preceding results enable us

in all cases to obtain by a tinite number of elementary algebraical

operations a solution of the problem 'to determine whether jydx is

algebraical, and to find the integral ivhen it is algebraical.'

9. (i) It would take too long to attempt to trace in detail the steps of

the general argument. We shall confine ourselves to a solution of a particular

problem which will give an illustration sufficient for our present purpose of

the general nature of the arguments which must be employed.

We shall determine under what circumstances

k
dx

{x-p) J{ax^ + 2gx+ c)
'

is algebraical. This question might of course be answered by actually

evaluating the integral in the general case and finding when the integral

function reduces to an algebraical function. We are now, howe\er, in

a position to answer it without any such integration.

In this case y= -pr^ , A'= {x - pf (a.r-+ 2gx + c),

sjA

and if ji/dx is algebraical it must be of the form B {x)/s,fX. Hence

y dx\s]x,

or 2A'=2A'i?'-/Lr'.

We can now show that R is a })olynomial in x. For if 11= Ui I', where U and

Tare polynomials, I', if not a mere constant, must contain a factor

{X+ A)\ (a>0),

and we can nut R = ,

W{x+Ay

where 6^ and Tfdo not contain the factor x+ A. Substituting this expression

for R, and reducing, we obtain

2aUWX^ ^ ^, ^^^^_ 2 ^. ^^,^ _ ^ ^^r^, _ 2 1,722' {x+A f.
x-\-A

Hence A' must be divisible by x-\-A.

SupiJose then that X={x-\-AY

X

H. 3
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where X is prime iox + A. Substituting in the equation last obtained we

deduce
]

x-\-A

which is obviously imjjossible, since neither U, IF, norX is divisible by x-\-A.

Hence /"
^^

:
^M

J {x—p) ^/(ax^+ 2gx+ c) (x-p) J(ax^+ 2gx+ c)

where U{x) is a polynomial. Differentiating and clearing of radicals

{{x-p) (U'-l)- U} {ax^+ 2gx + c)= U{x-p) {ax+g).

If the first term in U is vIa'"' we find at once on equating coefficients of

y;m + 2 -ti^at »i= 2. We may therefore take

U=Ax''-+ 2Bx+ C,

so that

{{x-p) {2Ax+ 2B-\) - Ax"' - 2Bx - C} (ax"'+ 2gx+c)

= (x -p) (ax+g) {Ax^+ 2Bx+C).

Now ax^+ 2gx-\-c is not divisible by ax+g, as in that case it would be

a perfect square. Hence either ax'^ + 2gx + c and Ax-+ 2Bx-\-C differ only

by a constant factor, or they have one factor ^— 5- in common, and x-p
divides ax'^+2gx+c If x — t is the second factor of Ax^+ 2Bx+ C we must

have
2Ax+ 2B-l = 2A{x-t).

Dividing out by xl {x—p){x — q){x — t) we obtain

a{2{x-p)- {x-q)}=ax+g,

or a{q-2p)=g, i.e. 2q-Ap= —q-p, q=P, which is not the case. Hence the

only possible case is that in which

^'iax^'+ igx+ c)

h
= const

{x-p)sj{a.v^+ 2gx+ c)
'

x-p '

where ap- + 2gp + c = 0. It is easily verified that this equation is actually

satisfied, the value of the constant being lU(g'^ — ac). The formula is

equivalent to

j{x-p)\l{x-p){x-q)~ q-pSj \x-pj '

(ii) The result of the preceding paragraph also enables us to supply

a strict proof of the two fundamental theorems stated without proof in

II. 5 ; viz.

(a) e' is not an algebraical function of x

:

(6) log X is not an algebraical function of x.

* Greenhill, A Chapter in the Integral Calculus, p. 18. The same method may
f dx

be applied to the integral 1 -. r—;—-— (r>l).
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If y= log^, x^ev, and if x is an algebraical function of y, y is an
algebraical function of x. It is therefore sufficient to prove that

[dx
y--

is not algebraical. If y is algebraical it is a rational function of x and l/jr,

i.e. of X. That is to say

log.^'= A',/A'o (1)

where X^ and Xo are polynomitils. It is not difficult to show by purely

algebraical reasoning that the equation

\_ X{X,-X^Xi
X X^

obtained by diflferentiating (1), is impossible. But it is simpler to argue

otherwise. The right-hand side of (1) either tends to a finite limit for

x=cc or becomes infinite or vanishes like a power of x, viz. .r'""", where m
and n are the degrees of A'l and X.^. On the other hand log.r tends to infinity

with X, but more slowly than any power of x. Hence log .r is not rational,

and therefore not algebraical.

Not only is it impossible that log^fc- should be algebraical but also it is

impossible that any sum of the form 2^4j.log(:r-aj.), where all the a's are

diflferent, should be algebraical (and therefore, by v. 8, rational). The reader

should by now be able to prove this for himself, or he can refer to Liouville's

proof of this and a number of more general theorems in the memoir referred

to on p. 5. It is this result which was assumed in iv. 3.

(iii) If f-3y+ 2x=

the integral ^ydx is algebraical and equal to

l{6xy-3f-)*.

10. The general theorem of 8 gives the first step in tlie rigid proof

of Lcqdaces principle stated in iii. 2. On account of the immense

importance of this principle we repeat Laplace's words

—

'I'integrale

dhtm fonctioii differentielle ne peut contenir d'autres qiiantites radicaux

que celles qui entrent dans cette fonction! This general principle,

combined with arguments similar to those used above (v. 9 (i)) in

a particular case, enables us to prove without difficulty that a great

many integrals cannot be algebraical, notably the standard elliptic

integrals

r dx [ If ^-^' \j {
^^

j^{(l _ ^) (1 _ y^v) ' ^ j \/ U - ^a?)
'^'

JV {^0? -g^- gz)
'

which give rise by inversion to the elliptic functions.

* This is easy to verify. A .synthetic proof following Liouville's general line of

argument will be found in a memoir by Baffy {Annales de I'Ecule Nurmale

Superieure, p. 185),

3—2
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11. We must now consider in a very summary manner the much

more difficult question of tlie nature of those integrals of algebraical

functions which are expressible in finite terms by means of the

elementary transcendental functions. In the first place, no integral of

ani) algebraicalfunction can contain any exponential. Of this theorem

it is, as we remarked before, easy to become convinced by a little

reflection, as doubtless did Laplace, who certainly possessed no rigid

proof. The reader will find little difficult}^ in coming to the conclusion

that exponentials cannot be eliminated from an elementaiy function by

differentiation. But we would strongly recommend him to study the

exceedingly beautiful and ingenious proof of this proposition given by

Liouville*. We have unfortunately no space to insert it here.

It is instructive to consider particular cases of this theorem. Suppose for

example that \ydx\ where y is algebraical, were a polynomial in o: and e^, say

22a,„,„A-»'e'« (1).

When this expression is differentiated e^ must disappear from it : otherwise

we should have an algebraical relation between x and e^. Expressing the con-

ditions that the coefficient of every power of e^ in the differential coefficient

of (1) vanishes identically we find that the same must be true of (1), so that

after all the integral does not really contain e*. Liouville's 2)roof is in reality

a development of this idea.

The integral of an algebraical function (if expressible in finite terms)

can therefore only contain algebraical or logarithmic functions. The
next step is to show^ that the logarithms can only be logarithms of the

first order, i.e. simple logarithms of algebraical functions, and can only

enter linearly, so that the general integral must be of the type

jydx = t + A log u + B log v+ ... + K log ic,

where A, B,..., K are constants and t, u, v,.. ,w algebraical functions.

Oidy when the logarithms occur in this simple form will dificrentiation

eliminate them t.

Lastly it can be shown t by arguments similar to those of 8 that

t, n,..., w are rational functions of x and jj. Thus ^ydx, if a finite

eleraentai-y function, is the sum of a rational function of x and y and

of certain constant multiples of logarithms of such functions. We can

suppose that no two of A, B,...K are commensurable, or indeed, more

generally, that no linear relation

Aa + B(3+ ... + Kk = 0,

* Journal de VEcole Polytechnique, t. xiv. cahier xxiv. p. 46. The proof may
also be found in Bertrand's Calcul Integral, p. 99.

t Liouville and Bertrand {loc. cit.).
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with rational coefficients, holds between them. For if such a relation

held we could eliminate A from the integral, writing it in the form

Ji/dw ^t + B log (;vii '')+...+^ log {wu '^).

The case of greatest interest is that in which y is a rational function

of .V and JJT, where X is a polynomial. As we have already seen,

2/ can in this case be expressed in the form

where P and Q are rational functions of a-. We shall suppress the

rational part and suppose that y^Q/JX. In this case the general

theorem gives

J-^(?^
= ^'+^.+ ^ log {a + /3JX) + B log (y + SJX) + ...,

where S, T, a, ft, y, 8, ... are rational. If we differentiate this equation

we obtain an algebraical identity in which we can change the sign of

JJT. Thus we may change the sign of JJT in the integral equation.

If we do this and subtract we obtain (after writing 2A, ... for y1,...)

which is the standard form for such an integral. It is evident that we

may suppose a, /?, y,... to hQ polynomials.

12. (i) By means of this theorem it is possible to prove that a number

of important integrals, notably the integrals

are not explicitly expressible in finite terms, and so represent genuinely new

transcendents. The formal proof of this was worked out by Liouville*; it

rests merely on a consideration of the possible forms of the differential

coefficients of expressions of the form

and the arguments used are purely algebraical and of no great theoretical

difficulty. The proof is however too detailed to be inserted here. It is not

difficult to find shorter proofs, but these are of a less elementary character,

being based on ideas drawn from the theory of functions t.

* Journal de VEcole Polytechnique, t. xiv. cahier xxni. p. 37.

t The proof given by Laurent {Tniite (VAnalyse, t. iv. p. 1;33) appears at first

sight to combine the advantages of both methods of proof but unfortunately will

not stand a closer examination.



38 ALGEBRAICAL FUNCTIONS [v

The general question-s of this nature which arise in connection with

integrals of the form I -prr dx I or, more generally, / ;;;vj, dx \ are of extreme

interest and difficulty. The case wliich has received most attention is that

in which ?« = 2 and X is of the third or fourth degree, in which case the

integral is said to be elliptic. An integral of this kind is cciUed psetido-elliptic

if it is expressible in terms of algebraical and logarithmic functions. An
example was given above (v. 7). General methods have been given for the

construction of such integrals, and it has been shown that certain interesting

forms are p.seudo-elliptic. In Goursat's Cours d'Analyse*, for instance, it is

shown that if f{x) is a rational function such that

then
/' f(x)dx
J^{x(l-x){l-k^xy\

is pseudo-elliptic. But so far no absolutely complete method has been devised

by which we can always determine in a finite number of steps whether a given

elliptic integral is pseudo-elliptic, and integrate it if it is, and there is reason

to suppose that no such method can be given.

And up to the pi'esent it has not, so far as we know, been actually and

explicitly proved that the function/dx
is not a root of an elementary transcendental equation ; all that has been

shown is that it is not explicitly expressible in terms of elementary trans-

cendents.

The processes of reasoning employe.d here, and in the memoirs to which

we have referred, therefore do not suffice to prove that the inverse function

A'=sn u is not an elementary function of ?<. Such a proof must rest on the

known properties of the function sn u, and would lie altogether outside the

province of this pamphlet.

The reader who desires to pursue the subject fiu-ther will find references

to the original authorities in the Appendix.

(ii) One particular class of integrals which is of especial interest is

that of the binomial integrals

jx"'{ax''+ b)Pdx,

where m, n, p arc rational. Putting ax^=ht and neglecting a constant factor

we obtain an integral of the form

\tfi{\+t)>'dt

where j) and q are rational. If ^) is an integer and q a fraction r/s this can

be at once integrated by putting <= »», which rationalises the integrand. If

q is an integer and p=^r/s we put 1 -f < = ?(«. If p+ q is an integer, a,ud p= r/s,

we [lut 1 -\-t= tu'.

* Pp. '264-2GG.
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It follows from TcheLichef's researches (to which references are given in

the Appendix) that these three cases are the only ones in which the integral

can be evaluated in finite form.

13. In V. 4. 5 we considered in some detail the integrals

connected with curves whose deficiency is zero. We shall now
consider in a more summary way the case next in simplicity, tliat in

which the deficiency is unity, so that the number of double points is

Kw-l)(/i-2)-l = i«(w-3).

It has been shown by Clebsch* that in this case the coordinates of

the points of the curve can be expressed as rational functions of

a j)arameter t and of tJie square root of a polynomial in t of the third

orfourth degree.

The fiict is that the curves

y'^=a-\- hx+ c.^2+ dx^^

y'^= a-'r bx + CA'- + d^ifl + e.^•*,

are the simplest curves of deficiency 1. The first is simply the typical cubic

without a double point. The second is a quartic with two doable

points, in this case coinciding in a taciiode at infinity, as we see by making

the equation homogeneous with z, then writing 1 for y and comparing the

resulting equation with the form treated by Salmon on p. 215 of his Higher

Plane Curves. The reader who is familiar with the theory of algebraical plane

curves will remember that the deficiency of a curve is unaltered by any

birational transformation of coordinates, and that any curve of deficiency 1

can be birationally transformed into the cubic whose equation is written above.

The argument by which this general theorem is proved is very

much like that by which we proved the corresponding theorem for

unicursal curves. The simplest case is that of the general cubic curve.

We take a point on the curve as origin : then the equation of the curve

is of the form

(a, b, c, d\x, yy + {e, f g\x, yf + (h, k^a; y) = 0.

Let us consider the intersections of tliis curve with the secant ?/ = te.

Eliminating y we see that w is given by

(«, b, c, dll, tfaf + (e,f glh t)Kr + (/^ ^^1, = 0.

Hence the only irrationality which enters into the expression of .r, and

so of y, is

JiK^,/, 9lh OT-4(/^ m, t)[(a, b, c, dll, t)%

A more elegant method has been given by Clebsclit. If we

write the cubic in the form
L3IN^F,

* Crelle, h. G4, p. 210. t Hermite, Cours, pp. 422-425.
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where L, M, N, P are linear functions of x and y, so that X, M, N are

the asymptotes, the hyperbolas LM= t will meet the cubic in four fixed

points at infinity, and therefore in only two points which depend on

t. For these points

LM^t, P^tN.
Thus if the curve is

a? +y - ^(ixy +1 = 0,

so that

L = ox + (1^-1/ + a, 3/= w-.r + w?/ + «, N=x + y + a, F = d^-1,

oi being an imaginary cube root of unity, we find that the line

x + y + a = {a^- l)/t

meets the curve in the points given by

_ b-at JsT _ h-at _ VsT
^~

2t - U ' ^~ 2t ^ 6t '

where b-a^-1 and
T =W - da-f + Gabt - b'.

In particular for the curve

a^ + y' + 1 - 0,

14. It will be plain from what precedes that

JJi {x, ^/(a + bx + cx^ + dx^)} dx,

can always be reduced to an elliptic integral, the deficiency of the cubic

y = a + bx + cx" + dx^

being unity.

In general integrals associated with curves whose deficiency is

greater than unity cannot be so reduced. But associated with every

curve of (let us say) deficiency 2 there will be an infinity of integrals

JR (x, y) dx

reducible to elliptic integrals or even to elementary functions ; and

there are curves of deficiency 2 for which all such integrals are

reducible.

For exami>le /^ (?', J.i^ + «.r* + bx" + c) dx

may be sj)lit up into tlie sum of the integral of a rational function and

tw'O integrals of the type

/' ^1 (.r-) dx f XR2 (.r-) dx

\j{af + ax' + bx- + c) ' jJix^ + aa^ + bx' + c)
'

I
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and each of these becomes elliptic on putting or = t. But tlie

deficiency of

'if' = x^ + ax^ + bx^ + c

is two. Another example is given by

JR {x, slx^ + ax^ + bx^ + ex + d) dx*.

15. It would be beside our present purpose to enter into any
detail as to the general theory of elliptic integrals, still less of the

integrals (usually called Abelian) associated with curves of deficiency

greater than unity. We have seen that if the deficiency is miity the

integral can be transformed into the form

jn (x, ^x) dx

where JT= x* + ax? + bx" -^ cx + d^.

It can be shoAvn that by a transformation of the type

at + p^~
yt + ^

this can be transformed into an integral

JBit,JT)dt

where T = t' + Af + B.

We can then, as when T is of the second degree (v. 3) decompose

this into two integrals of the forms

[B (t) dt
fR(t)dt, f^

of which the first is elementary while the second can be decomposed

i

into the sum of an algebraical term and certain multiples of the integrals

'dt (fdt[dt
[
t'dt

and of a number of integrals of the type

dt

k
These integrals (v. 12 (i)) cannot in general be reduced to elementary

functions, and are therefore new transcendents.

* See Legendre, Traite des Fonctions Elliptiques, t. i. Cli. xxvi-xxvi.,

xxxii-xxxiii. ; Bertrand, Calcul Integral, p. 67, aiul Enneper, Elliptisclw Fttiik-

tionen, Note 1, where abundant references are given.

t There is a similar theory for curves of deficiency '2, in which A' is of the sixth

degree.

X V. e.g. Goursat, Coins iVAitahjse, t. i. pp. '2.55-207.
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We will only add, before leaving this part of our subject, that the

algebraical part of these integrals can be found by means of the

elementary algebraical operations, as was the case with the rational part

of the integral of a rational function, and with the algebraical part of

the simple integrals considered in v. 3 and v. 9.

VI. Transcendental functions.

1. The theory of the integration of transcendental functions is

naturally much less complete than that of the integration of rational

or even of algebraical functions. It is obvious from the nature of the

case that this must be so, as there is no general theorem concerning

transcendental functions which in any way corresponds to the theorem

that any combination of algebraical functions, explicit or implicit, may
be regarded as a simple algebraical function, the root of an equation of

a simple standard type.

One may almost say that there is no general theory: the theory

reduces to an enumeration of the few cases in which the integral may
be transformed by an appi-opriate substitution into an integral of

a rational or algebraical function. These few cases are however of

immense importance in the applications of the general theory of

integration.

2. (i) The integral

where F is an algebraical function, and a, b, ...,/• commensurable

numbers can always be reduced to that of an algebraical function.

In particular

jRie'^, g^^, ...,(^)dx,

where R is rational, can always be calculated in finite terms. In the

first place a substitution of the type x = ay will reduce it to the form

SR.{ey)dy,

and then the substitution e" = z reduces this to the integral of

a rational function.

In particular, since cosh^ and sinh.r are rational functions of

e', and cos.r and sin.r are rational functions of e'~', the integrals

\R (cosh X, sinh .v) d.r, JR (cos x, sin x) dx

can always be evaluated in finite form. In the case of the latter
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I

integral the substitution indicated above is imaginary, and it is

' generally more convenient to use the substitution

tan ^a; = f,

which reduces the integral to that of a rational function, since

1-^'
. 2t , 2dt

cos^ = -
-, , sui a' = r. , aw

1 + ^ 1 + t-' 1 + f

(ii) The integrals

jR (cosh X, sinh x, cosh 2x, sinh mx) dx,

jR (cos X, sin x, cos 2x, sin mx) dx,

are included in the two standard integrals above.

Let us consider some further developments couceruing the integral

\R (cos X, sin x) dx*.

If we make the substitution 2=e'^ the subject of integration becomes a

rational fmiction II (z), which we suppose split up into

(i) a constant and certain positive and negative powers of z,

(ii) groups of terms of the type

^
I

^1
I

,
^n

(I)
z-a'^ {z-ay-

••
"^(s -«)» + ! ^

^'

The terms (i) when expressed in terms of x give rise to a term

2 {c/c cos kx+ dk sin kx).

In the group (1) we put 2;= e*'*^, a = 6'", and using the equation

J_=le-''^f-l-^•cot•^')
z-a \ 2 /

we obtain a polynomial of degree n + \ in cot \ {x - a). Since

cot2x=-\ ,— , cot-^ ^^= - cot .r - - ;i- (cot- .r), . .

.

dx ''i a.t

this polynomial may be transformed into the f(jrm

C+ Co cot i (.r - a) + (7i ^-^.
cot |(a- - a) + . . . + C„ ^, cot ^ (.r - a).

The function Ii (cos x, sin x) is now expressed as a sum of a number of

terms each of which is immediately integrable. The integral is a rational

function of cos a; and sin a- if all the constants C„ vanish ;
otherwise it includes

a niuuber of terms of the type

2fologsin i {x-a).

* Hermite, Cours, pp. 320 et seq.
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Let us suppose for simplicity that H{z) when split up into partial fractions

contains no terms of the types

C, 2"^, 2-^ \l{z-af (jD>l).

Then
R (cos Xy sin x) = Co cot |(^ - a) + -Dq cot ^ (.r - ^) + . . .

,

and tlie constants Cq, Dqj ••• ^re easily assigned by considering the behaviour

of the function R for values of x very nearly equal to a, ^, It is often

convenient to use the equation

cot \ {x — a) = cot {x— a) + cosec (.r - a)

which enables us to decompose the function R into two parts C (x) and

V (x) such that

U {x+ 7r)=U (x), V {X+ tt) = - F (x).

If R has the period n, it is easy to see that V must vanish identically ; if

it merely changes sign when x is increased by tt, (7 must vanish identically.

Thus we find without difficulty that if ??i<?i

sin mx 1 2?i-i ( _ )*:sin ma _ 1 n-i(^ _ )tsin ma
sin wa? 2n o sin (.r — a) » o si" (^ - a)

, Z'TT

where a=—

,

n

in-l
or = — 2 ( — )'^ sin ??ia cot (.r — a)

n

according as m+ w is odd or even.

(iii) One of the most important integrals in applications is

/• dx

J a+b cos .r'

where a and b are real, which may be integrated as explained above, or by

the transformation tan ^x— t. A more elegant method is the following.

If
I

«
I

>
I

6
I

we suppose a positive and use the transformation

{a+ b cos x) {a — b cosy)= d- - b-,

which leads to
dx _ dy

a-\-bco&x ^{a^~b'^)'

If
I

a
I

<
I

6
1
we suppose b positive and use the transformation

(6 cos X+ a) {b cosh y - a) = b'' — cfi.

dx
The integral

k-', + b cos x-\-c sin x

maybe reduced to this form by the substitution .7; + a=y, where cota = 6/c.

The integrals

dxf dx f

b cos-r+csina?)"

may be at once deduced by diflferentiation. The integral

dx
(A cos^X+2B cos .r sin x+ C sin^ .r)"!•
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is really of the same type, since

A cos^ x-\-%B cos X sin x+C sin- x= h{A + C) + ^ {A - C) cos 2x+ 5 sin 2.r.

And similar methods may be applied to the corresponding integrals wliich

contain hyperbolic functions, so that this type includes a large variety of

integrals of common occurrence.

(iv) The same substitutions may of course be used when tlie subject of

integration is an irrational function of cos.r and sin.r, though sometimes

it is better simply to use the sulistitutions co^x= t or sin.r= /. Thus

J/i(cos.r, sin .r, ^IX)dx,

where A'=(«, />, c, f\ g, /ifcos x, sin.r, 1)^

is reduced to an elliptic integral by the substitution tan|.i'= <. The most

important integrals of this type are

fH (cos X, sin x) dx [ ^ (^*^s -^j si'^ ^) ^^

J v'( 1 - ^^ siii^ .v) '
_/ V(« + h cos X 4- c sin x)

'

3. The integral

where «, h, ...,/ are <i)uj numbers, and P is a polynomial, can always

be integrated in finite terms. For it is obvious that it can be reduced

to the sum of a finite number of integrals of the type

^x''^
e-^'^dx;

This type includes a large variety of integrals such as

jx^ cos'^ jjx sin" qxdx, Jx" cosh'^px sinh" qxdx,

jx'" e"^ cos'' pxdx, jx" 6'-"^ sin" qxdx,

(m, ju, V, being positive integers) for which 'formulae of reducti(Ui'

are usually given in the text-books on the Integral Calculus.

Such integrals as

jF (x, log x) dx, jP {x, sin-i x) dx, ...,

where P is a polynomial, may be reduced to particular cases of the

above general integral by the obvious substitutions

x=^e-', .r = sin_?/, ....

4. Except for the two classes of functions considered in the two

preceding paragraphs, there are no really general classes of transcen-

dental functions which we can always integrate in finite terms,
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although of course there are innumerable particular forms which may

be integrated by particular devices. There are however many classes

of such integrals for which a systematic reduction theory may be given,

analogous to the reduction theory of elliptic integrals. Such a reduction

theory endeavours in each case

(i) to split up any integral of the class under consideration into

the sum of a number of parts of which some can be integrated in

finite terms, while the others cannot;

(ii) to reduce the number of the latter terms to the minimum

possible.

(iii) to prove that the terms of the latter class are incapable of

further reduction, and so constitute genuinely new and independent

transcendents.

As an example of this process we shall consider the integTal

/(f R {x) dx

where ^ (.r) is a rational function of x*. By means of the ordinary

theory of partial fractions this may be decomposed into the sum of

a number of terms of the type

Since

j{x- a)™+^ ~ on^x- ay "^ m J (x - a)'"
'

the integral may be further reduced so as to contain only

(i) a term 0^ S{x)

where >S' {x) is a rational function

;

(ii) a number of terms of the type

fe'dx
a I ,

J .I'-a

If all the constants a vanish the integral can be calculated in the finite

form e^S^x). If they do not we can at any rate assert that the

integral cannot be calculated m this form. For no such relation as

J X- a j x — b J X-

k

Avhere T is rational (or even algebraical) is possible. To see this it is

* V. Hermite, Com;-*' d'Analyse, p. 352 et seq.



4] TRANSCENDENTAL FUNCTIONS 47

only necessary to put x = a^h and to expand in ascending powers
of h. For

J x~ a J h

= ae" (log h + h+ ...),

and no logm-ithm can occur in any of tlie other terms.

Consider, for example, the integral

This is equal to

,j
A.

I

L

and snice 3 \^dx= h 3 \ — dx\
J x^ X J X '

J x-^ 2.r^ 2 _/ x^ 2x^ 2x 2 J x '

we obtain finally

Similarly it will be found that

/„.(i-iy<b.=2..(i-i),

this integral being expressible in finite terms.

Since
I dx = eJ^ \— dy,
J x — a J y

\i x = y + a, all integrals of this kind may be made to depend on known

functions and on the single transcendent

\
— dx,

J X

which is usually denoted by \\{e'') and is of great iuii)urtaii('e in the

theory of numbers. The ({uestion of course arises as to whether this

integral is capable of finite expression in terms of elementary functions.

Now Liouville* has proved the following theorem: if y is any

algebraical function of x, and

je^ydx

is integrable infinite terms, its value ivill he of theform

e''{a + fty+... + Xy"-')

* Crelle, siii. p. 107 et seq. Liouville shows how the integral, when of tliis

form, may always be calculated.
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a, yS, . .

.
, A. being rational functions of x and n the degree of the

algebraical equation ivhich determines y as a function of x.

Liouville's proof rests on the same general principles as do those of

the corresponding theorems concerning the integral {ydx. It will

be observed that no logarithmic terms can occur, and that the theorem

is therefore very similar to that which holds for ^ydx in the simple

case in which the integral is algebraical. The argument which shows

that no logarithmic terms occur is substantially the same as that

wliich showed that if they occur in the integral of an algebraical

function they must occur linearhj. In this case tlie occurrence of the

exponential factor precludes even this possibility, since differentiation

will not eliminate logarithms Avheu they occur in the form

e' log/(.r).

In particular, if _?/ is a rational function, the integral must be

of the type

e" R (x)

and this we have already seen to be impossible. Hence the 'logarithm-

integral
'

Jx J logy

is really a new transcendent, which cannot be expressed in finite terms

by means of elementary functions; and the same is true of all integrals

of the type

fe" R (x) dx

which cannot be calculated in finite terms by means of the process of

reduction sketched above.

The integrals

/sin X /» (x) dx, /cos xR (x) dx

may be treated in a similar manner. Either the integral is of the form

cos X Ri (x) + sin x R.2 (x)

or it consists of a term of this kind together witli a number of terms

which involve the transcendents

fcosx , fsmx ,

/ dx, }
dx,

J X J X

which are called the Cosine-integral and Sine-integral of x (Ci x and

Si.^•). These transcendents are of course not fundamentally distinct

from the logarithm-integral.
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5. Liouville has gone further and shown that it is always possible

to determine whether the integral

where P, Q,...,T,p,q, ...,t are algebraical functions, is an elementary

function, and to obtain the integral in case it is one*. The most
general theorem which has been proved in this region of mathematics

(also due to Liouville) is the following :

'ifi/, z,... are quantities ivhose differential coefficients are algebraical

functions of x, y, z, ... and F denotes an algebraical function, and if

jF{x,i/,z, ...)dx

is expressible infinite terms, it is of theform

t + Ahgu + Bhgv+ ...

where t, u, v, ... are cdgebraical functions of x, y, z, For
^'algebraical" we may substitute '^ rational" throughout.'

Thus for example the theorem applies to

F {x, e^, e'"", log x, log log x, cos x, sin x)

since, if the various arguments ofF are denoted by x, y, z, ^ rj, ^, $,

dy _ dz _ dt _l
dx~^' dx~^ ' dx~ x'

dx x^ dx dx

In spite of the immense generality of this theorem its proof is not

particularly difficult, and does not involve ideas radically different

from those which have been continually employed throughout the

preceding pages.

6. As a final example of the manner in which these ideas may be applied

we shall consider the following question :

' under tohat circumstances is

\R (x) log X dx

an elementary function, R being rational ?

'

In the first place the integral must be of tlio form

^0 (•», log x) + Ai log i?i (x, log x) + ^1 2 log Ii2 {Jc, log .r) + . . .

.

A general consideration of the form of the dift'ereutial coefticient of this

expression, in which log x must only occur linearly and multiplied by

a rational function leads us to anticipate that (i) i?o(-^, log:r) is of the form

S (x) {logxY + T i.v) log x+ IK {x),

* An interesting particular result is that the ' error function ' Je-^</x is not an

elementary function.

4
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where <S', 7', and IF arc rational, and (ii) /?i, Ri,-.- must be rational functions

of X only, so that the integi-al can be expressed in the form

S {x) (log xf + T{x) log X+ W{x) + 2^, log {X - a,).

Differentiating and comparing the result with the subject of integi'ation

we obtain the equations

>S"= 0, 2S:x +T'^E, Tx+ I r' + 2 Bklix - a^) = 0.

Hence .S is a constant, say C, and

-/(-^O-
We can always determine by means of elementary operations (iv. 3) whether

this integral is rational for any value of C or not.

If not the given integral cannot be expressed in finite form. If the integral

is rational we calculate T. Then

--/f-^}^.
must be rational, for some value of the arbitrary constant implied in T. "We

[T
can calculate the rational part of \ — dx: the transcendental part must be

cancelled by the logarithmic terms

25fclog(.t'-a;t).

The necessary and sufficient condition that the integral .should be an

elementary function is therefore that R should be of the form

where Ri is rational. That the integral is in this case such a function becomes

obvious if we integrate by parts, for

In particular

(i) n^^^dx, (ii) I'^f^^^dx,
^ j x-a J (a' - «) (''''

-

b)

are not elementary functions unless in (i) a— 0, and in (ii; 6= a. If the

integral is elementary the integration can always be carried out, with the

same reservation as was necessary in the case of rational functions (iv. 5).

It is evident that the problem considered in this paragraph is but one of

a whole class of similar problems. The reader will find it instructive to

formulate and consider such problems for himself.
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7. It will be obvious by now tliat the number of classes of

transcendentcal functions whose integrals are always elementary is very

small, and that such integrals as

j"/(.r, <f) dw, //(^', log x) dx,

//(.r, cos.r, iimx)d,r, {f(e'\ cos.r, sin.z')f/.r,

where /is algebraical, or even rational, are generally new transcendents.

These new transcendents, like the transcendents (such us the elliptic

integrals) which arise from the integration of algebraical functions,

are in many cases of great interest and importance. They may often

be expressed by means of infinite series or definite integrals, or their

properties may be studied by means of the integral expressions which

define them. The very fact that such a function is not an elementary

function in so far enhances its importance. And when such functions

have been introduced into analysis new problems of integration arise

in connection with them. We may enquire, for example, under what

circumstances an elliptic integi"al or elliptic function, or a combination

of such functions with elementary functions, can be integrated in finite

terms by means of elementary and elliptic functions. But before we

can be in a position to restate the f\indamental problem of the Integral

Calculus in any such more general form, it is essential that we should

have disposed of the particular problem formulated in Section III.
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d'Analyse, t. ii. ; Bertrand, Calcul Integral, ch. v. ; Wirtiuger, Encycl. d. Math.

Wiss., II. B 2, § 36 ; Enneper, Elliptische Functionen.

The literature concerning pseudo-elliptic integrals and exceptional cases

in Abelian integrals generally is very extensive. The following references

may however be useful : Weierstrass, Monatsherichte d. Ak. z\i Berlin, 1857

;

Raflfy, Annales de VEcole Xormale, 1885; Zolotareft', Journal de Math. (2),

t. XIX. ; Greenhill, Proc. Lond. Math. Soc., vol. xxv. ; Dolbnia, Journal de Math.

(4), t. VI. There are a number of })apers b}' Dolbnia, Ptaszycki, and Kapteyii,

in the Brdletin des Sciences Math., and by Poincare, Picard, (iunther, Raffv,

and Goursat in the Bulletin de la Soc. Math, de France. Picard's Tmiti''

d^Analyse and Appell and Goursat's The'orie des Fonctions Algebriques should

also be consulted.
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